Chemistry 101 - Fall 2019

General Chemistry A (3 credits; lecture and discussion)

Instructor Dr. Duarte Mota de Freitas, FH 022, Ext. 83091, E-mail dfreita@luc.edu

SI Leader Mr. Antonio Castillo, E-mail acastillo5@luc.edu

<u>Prerequisites</u> A satisfactory performance on the Loyola math diagnostic test, or completion of Math 117 with a grade of C- or better. A student may be withdrawn from the course at any time if the prerequisites have not been satisfied.

Lecture (101-015) M, W and F 2:45 p.m. - 3:35 p.m.; CU 109

<u>Discussions</u> You must attend only the section for which you registered

101 – 016: W, 10:25 a.m. – 11:15 a.m.; CU 312

101 – 018: W, 1:40 p.m. – 2:30 p.m.; MUND 506

Office Hours M and F, 4:00 p.m. – 5:30 p.m., FH 022; other times by appointment.

Course Materials and Resources

- 1. *Textbook* **Chemistry: The Central Science, 14th Edition** by Brown, LeMay, Bursten, Murphy, Woodward, and Stolzfus. There are hardback and electronic versions of this book. You may purchase older versions of the textbook, but the newest version has the least number of errors. Page numbers and tables mentioned throughout the course refer to that appearing in the newest version of the textbook. It is your responsibility to find the equivalent page numbers and tables in the older versions.
- 2. *Mastering Chemistry* Course ID: **MCLIN4092830** I suggest that you look at the assignment "Introduction to Mastering Chemistry" to learn how to enter answers into Mastering Chemistry.
- 3. Scientific Calculator To complete problems on exams and quizzes, you will often need a calculator; thus, it should be brought to class for every lecture and discussion period. Dr. Mota de Freitas will NOT provide a calculator on the day of the exam. You can only use a nonprogrammable, non-graphing calculator on exams. Calculator backs/covers, sharing of calculators, and use of cell phone calculators are not permitted during exams. Such use is a breach of the Loyola Academic Integrity Code.
- 4. *Sakai System* Web access is required for Sakai. Course-related materials will be deposited in Sakai (see sakai.luc.edu for additional information/ recommendations). The instructor will upload lecture PowerPoint slides on Sakai, and will make every effort to have the materials posted on the site at least a day before the lecture. A word of foreknowledge is that the PowerPoint presentations can be quite large and hence, if you do not have a high-speed internet connection at home, you should consider using Loyola's computer resources to download the materials.
- 5. Email Check your Loyola email account regularly for messages sent to the class via Sakai.
- 6. **Copyright/Intellectual Property reminder:** course materials provided by your instructors at Loyola may not be shared outside any course without the instructor's written permission.

Course Description and Objectives

General Chemistry A (CHM101) is the first in a two-semester sequence for general chemistry. This course surveys the universal concepts and principles underlying all of the disciplines of chemistry, and describes how chemistry impacts our daily lives. The goals for this course are for you to understand conceptually how atoms combine to form molecules, how these molecules interact and react with each other, and how these reactions manifest in the real world. To accomplish these goals, we will develop problem-solving skills by using simple mathematical equations and learning how to correctly read, interpret, and comprehend graphs and tables. The ultimate goal will be to evaluate problems, make predications, and draw conclusions. At the end of this course, you will be able to:

- Demonstrate a basic comprehension of fundamental concepts in general chemistry by utilizing the correct vernacular and terminology;
- Determine the number of molecules, mass, and moles using stoichiometry, chemical logic, and reasoning;
- Apply periodic trends to predict chemical and physical properties of a given type of matter; and
- Determine the electronic structure of a given atom and/or molecules as well as discuss its impact on chemical bonding and reactivity.

Supplemental Instruction

There are SI group study sessions available to everyone in this course. Your SI is Antonio Castillo, a student who has excelled in the course and is double majoring in chemistry and education. See www.luc.edu/tutoring for session schedules. Students are asked to arrive with their Loyola ID, lecture notes, and textbook. It is most beneficial if you attend weekly, and come ready to work with your peers.

Course Repeat Rule

Effective with the Fall 2017 semester, students are allowed only THREE attempts to pass Chemistry courses with a C- or better grade. The three attempts include withdrawals (W). After the second attempt, the student must secure approval for a third attempt. Read the full policy at this link (scroll down): https://www.luc.edu/chemistry/courses.shtml

Student Accommodations

Students with disabilities who seek accommodations in the classroom or other aspects of performing their coursework must first register with the **Student Accessibility Center (SAC)** located at Sullivan Center, Suite 117 6339 N. Sheridan Road Chicago, IL 60660. SAC staff members will work with students to obtain required documentation of disability and to identify appropriate accommodations as required by law. Information for students is available at: http://www.luc.edu/sac/

Student Athletes and Student Involved with University Activities

Students missing classes while representing Loyola University Chicago in an official capacity (e.g. intercollegiate athletics, debate team, model government organization) shall be allowed by the faculty member of record to make up any assignments and to receive notes or other written information distributed in the missed classes. Students should discuss with faculty the potential consequences of missing lectures and the ways in which they can be remedied. It is the responsibility of the student to make up any assignments. If the student misses an examination, the instructor is required to give the student the opportunity to take the examination at another time. https://www.luc.edu/athleteadvising/attendance.shtml Students must provide their instructors with

proper documentation describing the reason for and date of the absence. This documentation must be signed by an appropriate faculty or staff member, and it must be provided as far in advance of the absence as possible.

Academic Integrity

All students in this course are expected to have read and abide by the demanding standard of personal honesty, drafted by the College of Arts & Sciences, which can be viewed at: http://www.luc.edu/cas/advising/academicintegritystatement

A basic mission of a university is to search for and to communicate the truth as it is honestly perceived. A genuine learning community cannot exist unless this demanding standard is a fundamental tenet of the intellectual life of the community. Students of Loyola University Chicago are expected to know, to respect, and to practice this standard of personal honesty. Academic dishonesty can take several forms, including, but not limited to cheating, plagiarism, copying another student's work, and submitting false documents.

Any instance of dishonesty (including those detailed on the website provided above or in this syllabus) will be reported to Professor Miguel Ballicora, the Chairperson of the Department of Chemistry & Biochemistry, who will decide what the next steps will be. Any student found cheating on any examination or quiz will receive a "0" for that assignment. Moreover, depending on the severity of the misconduct, a final grade of F may be assessed for the course. We remind you that such an incident will become part of one's personal record and may be transmitted to organizations, such as medical or dental schools, pharmacy and graduate programs.

Appropriate In-class Behavior and Electronic Devices

It is incumbent upon you, as a student, to maintain a professionalism and a code of conduct appropriate with the course material and course enrollment. To this end, rude, disruptive behavior (such as talking during class, viewing computer materials not concerning class subjects, etc...) will not be tolerated. It is acceptable to use laptops or comparable devices (tablets, iPads, etc.) for taking notes in class. Voice recording but not visual recording is allowed. Cell phones must be turned off during class. If your device is activated during class, you must leave the class immediately and cannot return for the duration of that class period.

Grading Policy

Homework	15%	<u>Cutoffs:</u>	$A~\geq 88\%$	A- 87%
Quizzes	15%	B+ 86 - 81%	B 80 - 75%	B- 74 - 71%
Exams	70%	C+ 70 - 67%	C 66 - 61%	C- 60 %
Total score	100%	D+ 59 - 55%	D 54 - 50%	F < 50%

These are the grade cutoffs for Total scores. Letter grades are <u>only</u> assigned to your <u>Total</u> score, and not to individual assignments, quizzes or exams. You will receive an estimated midterm grade before the withdraw deadline (November 1, 2019), and final course grades at the end of the semester are posted only on LOCUS. Grades are only based on the criteria listed in this syllabus: no substitutes, no extra credit assignments and no additional criteria will be considered.

Homework There will be a total of 13 homework assignments but only the 10 highest scores count towards your grade. No make-up homework assignments will be given. The maximum score for any homework assignment is 1.5% pts. Homework assignments are administered on Mastering Chemistry (http://www.masteringchemistry.com), and they are due at 11:59 pm on specific dates (see table below). You may use the book and work in groups on these problems. Each student is responsible for their own assignment. Once the due date has lapsed, the homework problems will be made available for additional practice.

Due Date Ass	ignment	Due Date Assignn	nent
03-Sep Chapter 1		15 -Oct	Chapter 5
10-Sep	Chapter 2	24- Oct	Chapter 6
15-Sep	Chapter 21	04-Nov	Chapter 7
27-Sep	Chapter 3	15-Nov	Chapter 8
10-Oct	Chapter 4	26-Nov	Chapter 9
		08-Dec	Chapter 10

Quizzes In each discussion, a 5-min individual quiz will be administered. There will be 11 discussion assignments with the 10 highest scores counting towards your grade. The maximum score for any quiz is 1.5% pts. There are no make-up quizzes. On the days of hour exams, the discussion sections will be used for review, and no quizzes will administered.

Exams If you miss one 50 min-exam for any reason, Option 2 will be used to determine your grade. If you miss more than one test a make-up examination will be given at my discretion; a written doctor's or judge's or funeral director's note or equivalent, as well as notification prior to the test (via phone or e-mail) will be needed for any missed test to be made up. Exams will consist of multiple-choice and long-answer questions and are completely individually. The final examination will be 34% on new material and 66% on the material covered in Tests 1 to 3. Exams comprise 70% of your overall course grade, calculated as the HIGHER Total exam percentage between these two options:

Option 1: All 3 50-min exams, 15% each; final exam, 25%; Total exam % = 45% 50-min exams + 25% final

Option 2: Best 2 50-min exams, 15% each; final exam, 40%; Total exam % = 30% 50-min exams + 40% final

<u>Dates of 50-min Exams</u>: Wednesdays Sept 25, Oct 16, Nov 20. It is in your best interest to prepare for and take all exams. Extra time is not granted for late arrivals, including for the final exam. <u>Final exam</u>: 2 hours, Thursday December 13, 4:15-6:15 pm. The University sets the schedule for final exams, and there can be no divergence from the posted schedule of dates and times. The final exam is Mandatory: a student who does not take the final will not pass the course.

Exam Procedures Phones, tablets, wireless devices, etc. are not permitted on your person. If seen or heard, device will be confiscated along with exam copy and student will be dismissed with a score of zero. Show up early with three items: (1) your Loyola ID, visible on desk to be checked; (2) working pencil(s); (3) working scientific calculator, extra batteries are recommended. All jackets, bags, loose accessories, etc. must be left at the front of the classroom. Once the exam is distributed, if you exit the room, for any reason before time is up, do so quietly.

Error Policy

The instructor reserves the right to amend or correct the syllabus.

Tentative Lecture Schedule

Introduce yourself to multiple classmates early in the course. Our actual pace may vary from this schedule: <u>if you miss a class for any reason, it is your responsibility to immediately contact a classmate for notes and sections/topics covered,</u> as you are still responsible for all material covered and assigned. We will not cover every topic in every chapter of the textbook this semester. Focus first on the material that is directly covered in lecture and assigned or recommended. Explore the additional material in the textbook for your own interest and enrichment.

Date	Week	Class #	Topic
26-Aug	1	1	Syllabus, Ch. 1: Introduction, Matter Representations
28-Aug	1	2	Ch. 1: Properties of Matter, Units, Scales, Problem-solving
30-Aug	1	3	Ch. 2: Atoms, Atomic Structure, Isotopes
02-Sep		Labor Day No Class	
04-Sep	2	4	Ch. 2, Ch. 3: Atomic Weights, Molar Mass
06-Sep	2	5	Ch. 21: Radioactivity, Decay, Nuclear Stability
09-Sep	3	6	Ch. 21: Transmutations, Nuclear Energy
11-Sep	3	7	Ch. 21: Fission, Fusion
13-Sep	3	8	Ch. 2: Periodic Table, Molecules, Ions
16-Sep	4	9	Ch. 2: Compound Nomenclature and Formulas
18-Sep	4	10	Exam #1: Lectures 1 - 9
20-Sep	4	11	Ch. 3: Chemical Reactions & Equations
23-Sep	5	12	Ch. 3: Mole Concept, Mole Ratios & Stoichiometry
25-Sep	5	13	Ch. 3: Limiting Reactants, Reaction Yields
27-Sep	5	14	Ch. 4: Solutions, Electrolytes, Dissolution, Solubility
30-Sep	6	15	Ch. 4: Acids & Bases, Precipitation, Exchange Reactions
02-Oct	6	16	Ch. 4: Ionic and RedOx Equations
04-Oct	6	17	Ch. 4: Concentration Solution Stoichiometry
07-Oct		Mid Semester Break No Class	
09-Oct	7	18	Ch. 5: Energy, Thermodynamics, Heat
11-Oct	7	19	Ch. 5: Enthalpy, Heat Transfer
14-Oct	8	20	Ch. 5: Hess's Law, Formation Enthalpies, Bond Energies
16-Oct	8	21	Exam #2: Lectures 11 - 20
18-Oct	8	22	Ch. 6: Waves, Photons, Energy, Quantization
21-Oct	9	23	Ch. 6: Atomic line emission spectra, Hydrogen Atom
23-Oct	9	24	Ch. 6: Quantum Mechanics, Orbitals
25-Oct	9	25	Ch. 6: Electron Configurations
28-Oct	10	26	Ch. 7: Periodic Properties
30-Oct	10	27	Ch. 7: Periodic Trends
01-Nov	10	28	Ch. 8: Octet Rule, Bonding
04-Nov	11	29	Ch. 8: Bond Polarity & Partial Charges
06-Nov	11	30	Ch. 8: Lewis Structures, Formal Charges
08-Nov	11	31	Ch. 8: Resonance Contributors
11-Nov	12	32	Ch. 8: Lewis Structures & Bond Properties
13-Nov	12	33	Exam 3: Lectures 22 - 32
15-Nov	12	34	Ch. 9: Molecular Shapes, VSEPR Model Geometry
	•	•	

18-Nov	13	35	Ch. 9: Geometry & Polarity
20-Nov	13	36	Ch. 9: Valence Bond Theory, Hybrid Orbitals
22-Nov	13	37	Ch. 9: sigma and pi bonding
25-Nov	14	38	Ch. 10: Gas Properties, Gas Laws
27-Nov	Thankgiving No Class		
29-Nov			
02-Dec	15	39	Ch. 10: Ideal Gas Law Applications
04-Dec	15	40	Ch. 10: Kinetic-Molecular Theory
06-Dec	15	41	Ch. 10: Real Gases
13-Dec			Final Exam on Friday, 4:15-6:15 pm